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Endothelins, which are powerful vasoconstrictors, 

and nitric oxide, which is a powerful vasodilator, together 

form a balanced system that regulates blood flow in the brain 

and in other organs. Ongoing research may yield new drugs 

that act on this system to prevent or reverse cerebral vaso-

spasm in subarachnoid hemorrhage and other conditions. 

E2Z52I3 Many compounds are involved in cerebral vasoregula-

tion under physiologic and pathologic conditions; of these, en-

dothelins and nitric oxide have attracted considerable attention 

over the last several years. Endothelins and nitric oxide dif-

fer in chemical structure and pharmacological properties: 

endothelins are potent vasoconstrictor peptides consisting of 21 

amino acids; nitric oxide is a free radical with a half-life of only a 

few seconds and exerts powerful vasodilatory effects. Both 

are produced by a number of cell types in the brain and interact 

at various levels to profoundly influence cerebral vessel function. 
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THIS A R T I C L E distills new 

developments that may 

be of major clinical rele-

vance in understanding 

cerebral vasoregulation and condi-

tions of vasospasm, briefly summa-

rizes the biology of endothelins 

(ETs) and nitric oxide (NO), and 

sketches some of the interactions 

of a hypothetical ET-NO network 

in brain vasculature, derived from 

our own work and that of others. 

Further, we discuss the pathophysi-

ologic aspects of this network that 

offer encouraging approaches to fu-

ture therapy. 

Many compounds and mecha-

nisms identified in the last several 

decades can influence cerebral 

blood flow under physiologic and 

pathologic conditions. Most of 

them have been addressed exten-

sively in a number of excellent re-

views.1-10 Newly discovered factors 

that have attracted considerable 

attention in recent years are the 

ETs and NO, which apparently are 

components of a well-balanced 

regulatory arrangement that main-

tains vascular tone while retaining 

a high degree of plasticity. In the 

brain, this counterregulatory sys-

tem reaches out far beyond blood 
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vessels to involve neurons and glial cells, thereby 

potentially reflecting exciting aspects of a func-

tional entity. 

E N DOTH ELI NS: 
A FAMILY OF VASOCONSTRICTORS 

ETs, a recently described family of peptides, are 

among the most potent vasoconstrictors known and 

possess an extremely long duration of action. At 

least three ETs have been identified, each consisting 

of 21 amino acids. ET-2 and ET-3 differ from ET-1 by 

two and six amino acids, respectively, and also have 

somewhat different pharmacologic properties.11"13 

The genes encoding these peptides are located on 

different chromosomes, in humans on chromosomes 

6, 1, and 20.^18 

Originally isolated from aortic endothelial cells,11 

ETs are produced by a number of other cell types as 

well, including cerebral endothelial cells,19,20 hetero-

genous populations of neurons,21"25 glial cells,26"28 

and certain immune cells.29,30 Recently, even vascu-

lar smooth muscle cells were shown to produce ETs 

upon induction with growth factors.31 Because of 

this confusing variety of ET sources, observations of 

a cell-type-specific regulation of ET-gene expression 

take on greater importance.32"34 

ETs derive from prepropeptides approximately 

200 amino acids long; specific proteolytic enzymes 

produce the biologically active ET.11,35,36 The activity 

of these "endothelin-converting enzymes" (ECEs) 

seems to differ among organs and tissues,37"39 and 

each ECE mostly cleaves a specific substrate to pro-

duce a specific ET.40 In addition, the distribution of 

messenger RNA for ET-1, ET-2, and ET-3 is differ-

ent in different organs.41 All this may reflect the 

different physiologic tasks of these peptides. ECEs 

not only represent important regulatory elements in 

ET biology but also possess properties attractive for 

future therapeutic intervention. 

ETs act via specific binding sites—G-protein-

coupled receptors—distributed throughout the 

body, not exclusively associated with vascular struc-

tures.42 In the brain, these binding sites have been 

identified mainly in the cerebellum, basal ganglia, 

hippocampus, brain stem, and choroid plexus.25'42"45 

Two distinct subtypes of ET receptors have so far 

been cloned from a number of species. The ETA 

subtype preferentially accepts ET-1 and ET-2 as li-

gands and appears to be the one predominantly re-

sponsible for mediating vasoconstriction. In con-

trast, the ETB subtype is considered nonselective, 

binding ET-1, ET-2, and ET-3 with comparable af-

finity. Activation of the ETB receptor in endothelial 

cells by low doses of ETs tends to antagonize ETA-in-

duced effects and leads to the release of potent vaso-

dilators, mainly N O and prostacyclin.46"51 Thus, the 

ratio of ETa to ETB activation appears to be critical 

for the net effect of ETs on vascular tone. This ratio 

can change: any ET-receptor subtype can undergo 

up- or down-regulation, in turn altering tissue re-

sponsiveness to ETs.52,53 

Signal transduction pathways involved in ET-re-

ceptor stimulation include phospholipases C, A2, 

and D, protein kinase C, tyrosin kinase, receptor-

gated or voltage-dependent calcium channels, and 

sodium-hydrogen antiporters.54"59 

ETs not only are potent vasoconstrictors, but also 

act on other smooth muscle cells such as those in 

the bronchial tree.60 In addition, they display re-

markable mitogenic or comitogenic activity in a 

number of cell types and are able to influence cell 

differentiation.61"66 The characteristics and mode of 

action of ETs may justify their classification as hor-

mones, neuropeptides, or cytokines. 

Subtype-selective ET antagonists, monoclonal 

antibodies against ETs, and ECE inhibitors have 

been of tremendous help in the search for the physi-

ologic and pathophysiologic role of ETs.38,67"69 Two 

peptides, BQ123 (an ETA antagonist)68 and 

IRL1038 (an ETB antagonist)69 have become avail-

able for experimental use, but their pharmacoki-

netic disadvantages make them unsuitable for clini-

cal application. Recently, R046-2005, a promising, 

though non-ET-subtype-selective, nonpeptide an-

tagonist, has been described. A structurally modified 

pyrimidinyl sulfonamide related to oral antidiabetic 

agents but devoid of hypoglycemic activity, R046-

2005 can be given by mouth, penetrates the blood-

brain barrier, and has a half-life of approximately 8 

hours.70 This or similar compounds may be intro-

duced clinically in the near future. 

ETs are potent vasoactive 
mediators in the brain 

ETs can provoke extremely potent and long-last-

ing vasoconstriction, both in vitro and in vivo, in 

cerebral blood vessels of all sizes and types, includ-

ing the microcirculation.71"78 Intracisternal applica-

tion of as little as 10 pMol of ET-1 in dogs induces a 

pronounced spastic constriction of the vertebrobasi-

lar arteries, which lasts for more than a day.71,73 ET-1 
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can therefore be regarded as a potential mediator of 
chronic functional narrowing of cerebral vessels. 
Vasodilatory effects of ETs, apparently concentra-
tion-dependent, have also been described for the 
cerebral circulation and are most likely indirect, ie, 
they involve other mediators.48,50'51,78-81 

Under physiologic conditions, ETs do not pene-
trate the blood-brain barrier or influence its perme-
ability.42'82 ETs thus either require a damaged endo-
thelial cell layer in order to exert their effect in 
cerebral vessels via the lumen, or they must act from 
the adventitial side.83'84 These observations origi-
nally prompted our search for a source of ETs on the 
outside of cerebral vessels. 

In fact, astrocytes (glial cells that profoundly in-
fluence the function of both neurons and cerebral 
endothelial cells) were found to produce ET-1 and 
ET-3 and, in addition, to express high-affinity bind-
ing sites for these peptides.2^"28 Further, ET-1 release 
by these cells is subject to selective autostimulation: 
stimulation of astrocytic ET receptors potentiates 
further ET-1 release while leaving ET-3 unaffected.28 

A similar autostimulation of ETs has been shown in 
endothelial cells85,86 and, upon induction, in vascu-
lar smooth muscle cells.31 The amount of ET-1 pro-
duced by astrocytes in response to autostimulation 
with ET-1 greatly exceeds that achieved with other 
stimulants such as norepinephrine or thrombin.28'53 

Such local autostimulatory amplification within a 
cerebral microenvironment may be of major patho-
physiologic significance in a number of conditions 
ranging from subarachnoid hemorrhage to cerebral 
infection. 

NITRIC OXIDE: 
A VASODILATORY COUNTERBALANCE 

Interest in N O began when Furchgott and 
Zawadzki87 discovered that endothelial cells play an 
obligatory role in mediating vasorelaxation by re-
leasing a chemical compound in response to differ-
ent stimulants. This compound, initially termed 
"endothelium-derived relaxing factor" (EDRF), in-
duces relaxation by activating soluble guanylate cy-
clase in smooth muscle and by increasing the intra-
cellular concentration of cyclic guanosine 
monophosphate.88 It was subsequently identified as 
NO, a free radical with high lipid solubility and an 
extremely short half-life of only a few seconds in 
biological fluids.89,90 However, there is still a debate 
as to whether a nitroso-thiol compound such as 

S-nitroso-cystein eventually accounts for the effect 
of EDRF.91,92 

NO is derived from the guanidino group of its 
precursor, the amino acid L-arginine. This reaction, 
which is catalyzed by the enzyme N O synthase 
(NOS), yields citrulline as a by-product, which may 
be recycled in the cells via an intermediate com-
pound, argininosuccinate, in a partial urea cycle.93,94 

Several isoforms of NOS have been described,95,96 

which are expressed either constitutively (cNOS, 
eg, in endothelial cells) or upon induction (iNOS). 
Interestingly, iNOS expression may be triggered 
in smooth muscle cells of peripheral as well as 
cerebral arteries by incubation with endotoxin or 
cytokines.97"101 Once activated, iNOS results in 
high amounts of NO, which can contribute, for 
example, to the pathogenesis of endotoxic shock.100 

Endothelial cells are not the sole source of NO in 
the brain, since glial cells and neurons also express 
cNOS. In neurons, N O release is potently stimu-
lated by the excitatory amino acid glutamate via 
activation of postsynaptic N-methyl-D-aspartate 
(NMDA) receptors.102 NMDA-induced neuronal 
NO release is most pronounced in the cerebel-
lum,93,102103 but also occurs in other brain regions, 
including the forebrain.104 105 In the rat cortex, ap-
proximately 1% to 2% of the neurons are stained by 
NOS antibodies or are positive for nicotinamide-
adenine-dinucleotide phosphate- (NADPH-) dia-
phorase, an enzyme that appears to be highly similar 
or even identical to neuronal NOS.105"107 

NOS and NADPH-diaphorase have also been 
identified in nerve fibers surrounding cerebral arter-
ies in rats,103,108'111 dogs,112 cats,113 and humans.110 

This "nitroxidergic" innervation, which appears to 
originate mainly from parasympathetic ganglia, has 
been hypothesized to be involved in the pathogene-
sis of cerebral vasospasm and migraine attacks,114 via 
an imbalance (lack or excess) of NO release. 

NOS inhibitors can effectively block the relaxa-
tion induced by transmural nerve stimulation in 
isolated basilar or middle cerebral arteries devoid of 
a functional endothelium,112"119 indicating that N O 
from nitroxidergic nerves may mediate the nonad-
renergic, noncholinergic relaxation of cerebral 
blood vessels. Similarly, N O release may be the 
underlying cause of nonadrenergic, noncholinergic 
relaxation of smooth muscle cells in the gastroin-
testinal tract120 and the genitourinary system, 
thereby playing a pivotal role in the control of 
penile erection.121 
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Vascular NO 
and cerebrovascular tone 

The function of N O can be studied by blocking 
NOS activity with analogues of arginine such as 
NG'monomethyl-L-arginine (L-NMMA), NG-ni-
tro-L-arginine (L-NNA), or its methyl ester (L-
NAME).122 In large cerebral arteries isolated from 
different species, NOS inhibitors induce contrac-
tion, indicating that basal release of N O contrib-
utes to the maintenance of resting tone.123"128 Fur-
thermore, N O mediates relaxation in response to a 
number of vasoactive compounds such as acetyl-
choline.123,125"127,129 However, additional factors im-
portant to relaxation may also be released from the 
endothelium. In rabbit basilar arteries, complete 
inhibition of muscarinic and histaminergic relaxa-
tion can only be achieved by simultaneous applica-
tion of an NOS inhibitor and indomethacin to 
block the release of relaxant prostanoids (probably 
prostacyclin).127,130 

Similarly, in vivo, superfusion with NOS inhibi-
tors decreased the resting diameter of basilar arteries 
of rats and inhibited acetylcholine-induced dila-
tion.131"133 NO, therefore, participates in regulating 
the resting diameter and mediates muscarinic dila-
tion of the basilar artery. However, in small pial 
arteries of rats, topical application of an NOS inhibi-
tor produced no significant vasomotor effect,134"138 

and comparable results have been obtained in most 
studies in other species,139"142 although somewhat dif-
ferent observations have been reported sporadi-
cally.143"146 

Thus, basal release of NO does not appear to be a 
general prerequisite for the adjustment of resting 
tone in small pial arteries. Upon topical application 
of acetylcholine, however, these small arteries dilate 
in a concentration-dependent manner. This dila-
tion is blocked by simultaneous application of an 
NOS inhibitor,133 135'141 143 147 indicating that the ap-
parent noninvolvement of NO in the regulation of 
resting tension is not due to a lack of NOS activity 
in the vessel wall. 

Topical application of low concentrations of 5-
hydroxytryptamine (5-HT) also results in an L-
NNA-sensitive dilation of small pial arteries in 
rats,136 while the dilating effect of bradykinin is not 
modified in the presence of L-NNA.135 144 Taken to-
gether, there are pronounced regional and mediator-
dependent differences in the function of EDRFs, 
reflecting this system's high plasticity in the regula-
tion of cerebrovascular resistance. 

NO may link cerebral blood flow 
to neuronal activity 

In most published studies, NOS inhibitors given 
systemically decreased the resting cerebral blood 
flow,129,148"157 indicating an increase in total cere-
brovascular resistance. This may partly result from 
constriction of large arteries such as the basilar ar-
tery.131"133 It may also partly result from constriction 
of intraparenchymal arteries and arterioles, since 
superfusion of the parietal cortex with NOS inhibi-
tors decreases regional cerebral blood flow,155,156,158 

although this does not affect the resting diameter of 
pial arteries appreciably, as discussed above. 

Endothelial cells may supply the tonically released 
N O that influences intraparenchymal resistance ves-
sels, but the presence of cNOS in neurons and glial 
cells95'159 suggests that these cells also make substan-
tial contributions. These observations led to the hy-
pothesis, based on computer simulation,160 that NO 
released from the parenchyma could couple regional 
cerebral blood flow to local neuronal activity. 

We have recently tested this hypothesis using the 
spreading cortical depression described by Leao161 as 
a model of cortical activation. The spreading de-
pression is characterized by a transient phase of 
neuronal hyperactivity caused by a massive release 
of the excitatory transmitter glutamate,162"165 fol-
lowed by a more sustained period of hypoactivity 
travelling over the cortex in a wavelike manner. 
The wavelike spread of increased neuronal firing is 
accompanied by transient dilation of pial arter-
ies166'167 and regional hyperperfusion.152,168'169 These 
effects appear to be mostly indirectly induced, since 
neither glutamate nor NMDA exerts any direct 
vasomotor effects in isolated cerebral arter-
¡es i45,i7o,i7i goth pjal arterial dilation and hyperper-
fusion during a wave of spreading depression can be 
reduced considerably by local or systemic applica-
tion of an NOS inhibitor.142'152'157 This may point to 
a role of N O in coupling neuronal activation and 
arterial dilation under this condition. 

Further studies using different methods of cortical 
activation support the hypothesis that N O links 
neuronal activity and perfusion. The increase in re-
gional cerebral blood flow induced by electrical 
stimulation of the tibial nerve can be abolished by 
intraparenchymal application of an NOS inhibi-
tor.172 Similarly, cortical hyperperfusion during 
whisker stimulation can be reduced by systemic ap-
plication or cortical superfusion with an NOS inhibi-
tor in anesthetized rats.158 However, in awake rats a 
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similar degree of hyperper-

fusion (expressed in per-

cent of resting cerebral 

blood flow) during whisker 

stimulation was found in 

the absence and presence of 

an N O S inhibitor.17'174 

Whether this lack of effect 

of NOS inhibitors on meta-

bolic coupling is due to in-

complete inhibition of 

N O S (as suggested by 

Irikura and coworkers175) 

remains to be established. 

Although the exact role 

of N O in controlling cere-

brovascular resistance is 

still a matter of specula-

tion,122,176 it may provide at 

least part of the link match-

ing metabolic demand with 

supply. 

T H E ET-NO N E T W O R K 

FIGURE. The endothelin (ET)-nitric oxide (NO) network: The players are known but the 

rules of the game are still obscure. ET-1, ET-2, and ET-3 are different peptides; ETA and 

ETR are receptors. NOS, nitric oxide synthase; cGMP, cyclic guanosine monophosphate. 

The ET-NO network, as deduced from the litera-

ture as well as from our own work, is presented in the 

Figure. This network provides a basis for under-

standing the actions and interactions of ETs and N O 

in cerebral vasoregulation. 

There are a number of potential sources of ET-1 

in the cerebral microenvironment. As mentioned 

above, endothelial cells,19,20,177,178 astrocytes,26"28 and 

neurons21"25 all can produce ET-1 and release it upon 

stimulation with various factors. ET-stimulating fac-

tors, such as norepinephrine, thrombin, interleukin-

1, endotoxin, and transforming growth factor-beta, 

are not equally efficient among cell types and also 

result in a different temporal ET-response pat-

tern.11,28,31 In addition to being produced in cells that 

reside in the brain, ET can be produced by macro-

phages that invade it under pathological conditions, 

eg, meningitis, ischemia, subarachnoid hemorrhage, 

or human immunodeficiency virus (HIV) 

encephalopathy.29,179-182 

Once ET-1 is present in a certain cerebral mi-

croenvironment, it binds not only to vascular 

smooth muscle cells (causing vasoconstriction), but 

also to ETB receptors and, most likely, to ETA recep-

tors located on endothelial cells85,183,184 and astro-

cytes.53,185 Activation of these receptors initiates the 
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autostimulatory amplification of ET-1 on one 

hand28,85,86 and, on the other hand, leads to stimula-

tion of NOS and subsequent synthesis of NO.78,186"188 

As illustrated in the Figure, N O is capable of inhib-

iting ET-1 release, thereby serving as a natural con-

trol factor of ET autostimulation.189 

Both N O and ET-1 act on vascular smooth mus-

cle cells, the former inducing vasodilation, the latter 

provoking vasoconstriction. With respect to smooth 

muscle proliferation, they also exhibit opposite ef-

fects, ET being a stimulator, N O an inhibitor.61,190 

ET-1-induced vasoconstriction appears to be medi-

ated mainly via ETA-receptors. There is, however, a 

high probability that vascular smooth muscle cells, 

perhaps with regional differences, additionally ex-

press an ETn-type receptor that is predominantly 

responsible for autoinduction of ET-gene expression 

in these cells." Whether ETB stimulation can lead to 

iNOS activation, thereby initiating smooth muscle 

N O production, is still unknown and has therefore 

not been integrated into the Figure. Nevertheless, 

vascular smooth muscle ET-1 can contribute to the 

"autocrine-paracrine balance" within its microenvi-

ronment. 

An additional level of control over ET action 

apparently consists of a transient reactive down-
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regulation of ET-receptor expression. This homolo-

gous down-regulation may selectively affect one re-

ceptor subtype and leave the other unaffected, as 

shown for ETA in primary astrocyte cultures in 

which ETb remained unchanged.53 In principle, ET0 

can also undergo down-regulation.52,53 Down-regula-

tion may originate at the mRNA level, extend to 

the expression of the receptor protein in the cell 

membrane, and could also consist of an internaliza-

tion of the receptor-ligand complex, perhaps fol-

lowed by receptor recycling.191"193 

As one aspect of autostimulatory phenomena, a 

negative correlation between ET-1 production and 

ETA-receptor expression has been shown for smooth 

muscle cells and astrocytes.53'194,195 Interestingly, 

changes in the ratio of ETA to ETB receptor expres-

sion in human endometrium have been observed 

during the menstrual cycle, indicating a function-

dependent shift in responsiveness to ET.196 

Removing or adding certain components may, 

despite the network's considerable plasticity, pro-

foundly disturb vasomotor and autocrine balance. 

For instance, introducing ET-3 into the network 

would, considering the low affinity of ET-3 for ETA 

receptors, result in a preferential stimulation of ETB 

receptors. This in turn might lead to a temporary 

preponderance of vasodilating factors. On the other 

hand, reducing NOS activity, leading to impairment 

of N O production, would contribute to exaggerated 

vascular contraction. 

DERANGEMENTS OF THE ET-NO NETWORK 

Cerebral vasospasm—the functional narrowing 

of vessels-—occurs in a number of conditions, in-

cluding subarachnoid hemorrhage, cerebral trauma, 

and meningitis. It may result from increased activity 

of vasoconstricting agents or decreased vasorelaxing 

capacities, or both. In either case, a profound distur-

bance of the basal vasomotor balance in cerebral 

vessels would result. In a number of species, ETs can 

produce long-lasting spasm of cerebral vessels upon 

intracerebroventricular application.71,73,83,197"199 In 

patients with subarachnoid hemorrhage-induced 

vasospasm, elevated levels of immunoreactive ETs 

have been identified in ventricular cerebrospinal 

fluid in a temporal pattern paralleling the occur-

rence of clinically documented vasospasm.200,201 In 

addition, an increased sensitivity of cerebral vessels 

to ETs has been shown following experimental 

subarachnoid hemorrhage,202 which may contribute 

to the functional preponderance of vasoconstricting 

agents in this condition. 

At the same time, vasorelaxing capacities seem to 

decrease considerably203"205: there is reduced produc-

tion of NO,206 reduced NOS immunoreactivity at 

the adventitial side of cerebral vessels (possibly due 

to a loss of nitroxidergic innervation), and marked 

reduction in the level of cyclic guanosine mono-

phosphate,207,208 which constitutes the effector path-

way of NO. Taken together, these events may help 

to explain the powerful vasospastic reaction of the 

cerebral vasculature. 

Ischemia-induced alterations may follow vaso-

spastic reactions of various origins or may initiate or 

further enhance them. Both ETs and N O appear to 

be mediators involved in the pathophysiology of 

ischemia.77,209"213 The synthesis of N O is profoundly 

altered, as shown by transient peaks of N O release 

immediately after ischemia and, likewise, after 

reperfusion.214 Furthermore, experimental ischemia 

leads to NOS induction.215,216 Similarly, ischemia has 

been shown in many ways to affect ET release as 

well as ET-receptor expression.41'212,217 Plasma ET 

levels have been found to be elevated in patients 

suffering from ischemic stroke.218 Interestingly, this 

has also been reported in acute migraine attacks.219 

Discrete ischemic lesions have further been iden-

tified in HIV encephalopathy, characterized by ab-

normalities appearing early on single-photon emis-

sion computed tomography and positron-emission 

tomography.220"225 Macrophage-derived multinu-

cleated giant cells in the brains of patients with 

acquired immunodeficiency syndrome were dis-

tinctly positively stained for ETs, as were astrocytes 

and endothelial cells in their vicinity.182 This may 

point to a concerted action in vivo of various cell 

types with respect to ET production in inflammatory 

conditions, and may be analogous to the autostimu-

latory amplification of ET levels shown in vitro. 

APPROACHES TO THERAPY 

Any disturbance of the ET-NO network, once 

recognized, could potentially be addressed by agents 

to restore the preexisting balance. Recently avail-

able ET antibodies, ET antagonists, and ECE inhibi-

tors have been reported effective in counteracting 

cerebral vasospasm in a number of species.70,226"229 

How treatment with ET antagonists will influence 

ET-receptor expression and, thus, tissue sensitivity 

to any ET-receptor ligand remains to be determined. 
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Such alterations will be of therapeutic significance. 
The role of N O released during complete or in-

complete ischemia as well as during reperfusion is 
still far from understood.213 On one hand, vasodila-
tion by NO may help to maintain regional blood 
flow above the critical threshold; on the other hand, 
N O may react with superoxide radicals to form per-
oxynitrite, a harmful free-radical species.230'231 Ac-
cordingly, no effect,232 an increase,233 and a de-
crease234-236 in ischemic damage have all been 
observed after application of NOS inhibitors in dif-
ferent experimental models of brain ischemia. Fur-
ther studies are needed to elucidate the involvement 
of NO in the pathophysiology of cerebral ischemia. 
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