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• As the complexity, cost, and risks of cardiac interventions direct attention to careful selection of 
patients, the ability of diagnostic imaging techniques to provide quantitative documentation of the 
hemodynamic severity of coronary artery disease will assume greater importance. Among the various 
techniques currently in use, positron emission tomography yields superior spatial resolution and 
attenuation correction and has high sensitivity and specificity. T h e correlation of positron emission 
tomography results with coronary stenosis severity and the possibility of making quantitative flow 
measurements using oxygen-15 water suggest that cardiac positron emission tomography may be the 
best noninvasive approach for diagnostic purposes. 
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AS THE COMPLEXITY, COST, and risks of 
cardiac interventions attract more atten-
tion to how patients are selected, the ability 
of diagnostic imaging to provide optimal 

physiologic assessment of the severity of coronary 
artery disease is more important than ever. 

In ischemic heart disease, an anatomic approach 
(coronary arteriography) has traditionally dominated 
clinical decision-making,1,2 and the prognostic sig-
nificance of evaluations of exercise capacity and left 
ventricular function are recognized.3,4 But the applica-
tion of quantitative assessments of coronary artery 
physiology to clinical practice has been delayed, in part 
by methodologic difficulties. Numerous approaches to 
the quantitative assessment of coronary flow have 
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been attempted. This review examines these techni-
ques, with particular attention to positron emission 
tomography (PET). 

CORONARY ARTERIOGRAPHY: SHORTCOMINGS 

Anatomic limitations 
Even though coronary arteriography is the "gold 

standard" for determining the presence and severity of 
coronary artery disease, its ability to fill this role is 
somewhat limited.5 Significant interobserver and in-
traobserver variability occurs, even when experienced 
observers visually assess high-quality angiograms.6"8 

Factors responsible for this variability include subjec-
tive phenomena (level of training, fatigue, bias in-
duced by knowledge of clinical data), the portion of 
the vessel deemed normal, and lesion geometry. Lesion 
geometry is particularly important, since most 
coronary stenoses are eccentric.9 The correlation be-
tween visual assessment of coronary arteriograms and 
physiologic evaluation of coronary flow is poor.10 
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Quantitative coronary arteriography11,12 has circum-
vented some of these technical considerations, with 
improved correlation with functional parameters.13,14 

These methods characterize the vessel lumen in multi-
ple dimensions at one point in the cardiac cycle, and 
are calibrated to a known reference measurement. 
Nevertheless, technical problems remain with this 
technique, including poor quality angiograms, the 
obscuring of lesions by overlapping vessels, and end-on 
viewing of vessels. 

The greatest limitation to the routine use of angiog-
raphy for the physiologic evaluation of coronary dis-
ease is inherent in the nature of the angiogram as a 
"luminogram." Using routine qualitative analysis, seg-
mental narrowing is compared with less narrowed ad-
jacent segments that are presumed to be normal. If the 
latter areas are actually the site of a concentric 
stenosis, the degree of segmental narrowing will be 
underestimated. Comparisons of angiographic inter-
pretation with pathologic findings at autopsy,15,16 or 
with intravascular ultrasound,17 have confirmed this 
underestimation of lesion severity. 

Physiologic limitations 
If it were possible to measure the vessel accurately, 

classic fluid dynamics would predict the 
hydrodynamic effects of an obstruction in a normal 
conduit; however, inherent variability of flow and ves-
sel resistance in the coronary system present problems 
for the application of fluid dynamic principles.18 The 
relationships studied in vitro have not proved consis-
tently applicable in vivo because of difficulties im-
posed by bifurcations, vessel curvature, and alterations 
in physiologic conditions,19 in addition to those of 
measuring normal vessel diameter and stenosis 
severity. 

Relatively severe stenosis of a coronary artery is 
required to alter resting blood flow.20 At rest, resistance 
at the arteriolar level limits coronary flow until 
coronary stenosis reaches a critical severity of 80% to 
85% of luminal area, corresponding with a diameter 
reduction of 60% to 80%.21 At this level, reactive 
coronary hyperemia, which initially compensates for 
diminished flow secondary to an obstruction, can no 
longer maintain flow. Thus, the hemodynamic effect of 
a coronary stenosis depends on the degree to which 
vasodilation at the arteriolar level compensates for the 
increased impedance to flow caused by the stenosis. 
Due to this coronary autoregulation, there is an in-
herent dichotomy between coronary anatomy and 
coronary flow. 

MEASUREMENT OF CORONARY FLOW 

Coronary flow reserve 
The use of flow reserve to assess stenosis severity was 

initially proposed by Gould.22 Flow reserve is calculated 
as the ratio of blood flow under maximal vasodilation 
to normal resting blood flow. This single measure of 
overall stenosis severity reflects geometric dimensions 
of length, absolute diameter, percentage of narrowing, 
and asymmetry. Myocardial flow reserve decreases as 
coronary pressure falls, and becomes exhausted when 
coronary pressure reaches the point at which 
autoregulatory vasodilation is maximal.23,24 

Various methods have been used to measure 
coronary flow reserve, and they all use a coronary 
vasodilator. The most widely used vasodilating agents 
are papaverine and dipyridamole, although the 
radiographic contrast agents are also effective at a 
weaker level.25 Papaverine (4 to 16 mg in sequential 
boluses) is the vasodilator of choice for invasive studies, 
with a reactive hyperemic response of 40 to 50 
seconds.26 Dipyridamole is better suited to noninvasive 
studies since its hyperemic response is longer.27 It is 
normally given in a dose of 0.56 mg/kg over 4 minutes, 
often followed by hand-grip exercise to maintain sys-
temic blood-pressure.27 Severely asthmatic patients 
should not undergo this examination due to the risk of 
inducible bronchospasm. Side effects of the intravenous 
vasodilator include flushing (52%), dizziness (7%), ar-
rhythmias (7%), angina pectoris (24%), and, in a few 
cases, myocardial infarction (1% to 3%).28 Adenosine29 

is an effective alternative and has the advantage of a 
more rapid response. 

Coronary sinus thermodilution 
Thermodilution is a well-established technique for 

measuring cardiac output; it is both widely available 
and inexpensive. With this technique, coronary flow 
is approximated by measuring flow in the coronary 
sinus. Although this method has been used to evaluate 
global coronary flow responses to pharmacologic 
agents,28 it is not applicable to the investigation of 
regional flow. This technique has two main limita-
tions: (1) because the technique is slow, measuring 
rapid changes in flow is difficult; and (2) catheter 
whip and respiratory movement can produce 
radiographic artifacts.30 

Gas clearance methods 
Gas clearance measurements analogous to those 

used to assess cardiac output may also be applied to the 
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determination of coronary flow. Radioactive xenon-
133 has been used for this purpose.31 The technique 
involves introducing the gas into the circulation, and 
it requires a multicrystal gamma camera and computer 
for data acquisition. This method cannot detect dif-
ferences in perfusion in selected transmural layers of 
the myocardium; moreover, temporal resolution is 
limited, so that rapid changes in flow cannot be 
measured accurately. Xenon-133 is highly soluble in 
cardiac fat, thereby limiting the number of reliable 
measurements that can be taken. The effects of 
myocardial fibrosis, ischemia, or hypertrophy on the 
partition coefficient of the gas are unknown. 

Direct measurements of volumetric flow 
Blood flow velocity may be measured directly with 

electromagnetic flow probes or Doppler catheters. Al-
though electromagnetic probes have been used intra-
operatively on vein grafts, the procedure requires ex-
tensive dissection to expose native coronary vessels 
and is hazardous. 

In contrast, intraluminal Doppler techniques are 
readily performed at the time of coronary arteriog-
raphy.32,33 Rapid changes in flow can be measured, and 
subselective measurements of coronary arterial blood 
flow velocity may be performed. 

Coronary videodensitometry 
Videodensitometry has been applied to acquire 

physiologic and anatomic data from coronary arteriog-
raphy.34 Using this technique, epicardial coronary flow 
velocity is measured by monitoring radiographic con-
trast intensity as a function of time at two points in a 
coronary vessel. Coronary blood flow is then deter-
mined as the product of cross-sectional area and flow 
velocity. The technique is limited by technical 
problems (corrections for variations in the cardiac and 
respiratory cycles), coronary vasodilation induced by 
the contrast agents, and the inability to distinguish 
regional perfusion inhomogeneities from transmural 
ones. Moreover, repeating the test under conditions of 
altered flow gives a commensurate and undesirable in-
crease in dye load. 

Limitations of coronary flow testing 
The invasive nature of these coronary flow tests 

restricts their use to the time of coronary arteriography 
and is an important limitation at serial follow-up 
(which may be needed to assess restenosis after angio-
plasty or to examine disease regression with medical 
therapy). Also, flow reserve in normal patients varies 

from 3.7 to 8.2 (average 5.0 ± 0.6). This wide range 
limits the ability of these tests to discriminate normal 
from abnormal responses. In diseased states, coronary 
flow reserve is even more variable and may be difficult 
to assess in diffuse coronary artery disease.24 Moreover, 
test results may be altered by changes in loading condi-
tions35 and in patients with left ventricular hyper-
trophy.36 

MYOCARDIAL PERFUSION IMAGING 

Techniques for examining myocardial perfusion are 
generally noninvasive. They can be readily repeated 
serially and can be performed under normal 
hemodynamic conditions rather than during cardiac 
catheterization. The various methods have three char-
acteristics in common: use of a stimulus (eg, intra-
venous dipyridamole) for increasing coronary blood 
flow, perfusion tracers, and tomographic imaging. 

Contrast echocardiography 
Myocardial contrast echocardiography provides in-

formation on coronary flow reserve and the size of 
coronary perfusion beds.37"39 However, despite promis-
ing work relating to the transpulmonary passage of 
contrast agents,40 systemic administration of contrast 
medium does not provide adequate definition of 
myocardial perfusion. Therefore, the technique is 
limited to situations where sonicated medium may be 
injected into the left ventricle, aortic root, or coronary 
arteries. Other technical drawbacks include difficulties 
imposed by shielding by intense contrast, and the in-
ability to measure absolute flow. 

Single-photon emission computed tomography 
The myocardial uptake of several potassium 

analogues (eg, thallium-201) correlates with regional 
perfusion.41 Single-photon emission computed tomog-
raphy has enhanced the role of perfusion scintigraphy 
as a noninvasive index of regional myocardial per-
fusion.42 However, the clinical use of thallium-201 as a 
perfusion tracer has important limitations, including 
the delayed redistribution phenomenon43 and soft tis-
sue attenuation resulting from the low energy of thal-
lium emissions. 

These limitations may be ameliorated by the use of 
technetium-99m isonitriles.44 The shorter half-life of 
technetium permits the performance of a true resting 
scan that can be compared with the image acquired 
during maximum coronary vasodilation. Relying on a 
redistribution scan by thallium imaging for this pur-
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pose can introduce confusion in distinguishing is-
chemia from scar. 

The limitations imposed by the low-energy photon 
emissions of thallium-201 have been improved by the 
use of technetium-99m; however, images using the lat-
ter agent are still prone to attenuation and scatter 
artifacts. Indeed, none of the conventional nuclear 
techniques can provide absolute data on coronary flow 
because of considerations relating to photon attenua-
tion, scatter, and nonlinearity of tracer uptake at high 
flows.45 

POSITRON EMISSION TOMOGRAPHY 

Positron emission techniques for assessing myocar-
dial perfusion utilize tracer kinetic principles cor-
responding to the those that govern the single-photon 
approaches, but they employ different instrumentation 
and radiopharmaceuticals and yield superior spatial 
resolution and attenuation correction. 

Principles of imaging 
Positrons are positively charged electron-like par-

ticles. When emitted by a disintegrating nucleus, they 
typically travel only a few millimeters before colliding 
with an electron. The collision produces two annihila-
tion photons, and the energy loss of this reaction is 511 
keV per photon. The photons are released at ap-
proximately 180 degrees to each other, and their simul-
taneous arrival at detectors on opposite sides of the 
patient activates a coincidence circuit that registers 
the occurrence of an annihilation event in that field 
(scatter and random photons activate a single detector 
and do not register an event). The resulting data are 
filtered, and images are formed by back-projection.46 

Perfusion tracers 
PET commonly uses three tracers to define coronary 

flow: rubidium-82, nitrogen-13 ammonia, and oxygen-
15 water. These agents have differing strengths with 
respect to various aspects of PET imaging. 

The major attraction of rubidium-82 for clinical 
cardiac PET is that it may be obtained from a gener-
ator, avoiding the need for a cyclotron.47,48 The short 
half-life of rubidium allows serially repeated measure-
ments in the same patient, but it also requires rapid 
data acquisition. Rubidium uptake is proportionate 
with flow at normal and low flow rates but underes-
timates very high flow rates. Moreover, the rubidium 
positron is of high energy and may travel for a sig-
nificant distance before annihilation, creating some 

ambiguity regarding the point of origin of the 
positron.49 

Nitrogen-13 ammonia50 is cyclotron-produced. Its 
half-life of 10 minutes allows its application in exercise 
stress tests but limits its use with sequential studies. As 
with rubidium-82, the retention fraction of nitrogen-
13 ammonia declines at higher flow rates, and ischemia 
itself may limit the uptake of tracer. However, 
nitrogen-13 ammonia has lower positron energy than 
rubidium-82, with consequent improvement of image 
quality. 

Oxygen-15 water is also cyclotron-produced, al-
though a generator is under investigation. Nearly 
100% is extracted by the myocardium, and its uptake is 
not influenced by ischemia. The half-life of this tracer 
is 2.2 minutes; this permits the performance of serial 
studies. The major limitation of oxygen-15 water is its 
high concentration in blood (including intramyocar-
dial blood volume) and in lung tissue, which compli-
cates measurements of tracer uptake in the myocar-
dium. This blood-pool activity may be measured in a 
scan of oxygen-15-labeled carbon monoxide.51 Because 
of this data manipulation, while these results produce 
reliable data regarding coronary flow, the image quality 
may be suboptimal. 

Imaging protocol 
The imaging protocol begins with a transmission 

scan using a gallium-filled plexiglass ring or a rotating 
positron-emitting source.52 The resulting image is used 
to correct for photon attenuation. The resting per-
fusion scan is followed by administration of vasodilator 
stress and stress (or hyperemic) imaging. Patient 
preparation and monitoring for PET is similar to that 
for thallium imaging: patients must fast and, with 
dipyridamole stress, must abstain from theophylline or 
caffeine products for at least 8 hours prior to the test. 
Electrocardiographic monitoring and blood pressure 
readings are obtained throughout the scan. 

Efficacy 
The results of rubidium-82 PET have been com-

pared with angiographic evidence of coronary dis-
ease.47,53,54 The sensitivity of PET ranged from 93% to 
96%, and the specificity ranged from 78% to 100%. 

The binary system of sensitivity and specificity does 
not allow for a continuous spectrum of disease, and 
percent diameter of stenosis alone is not an optimal 
standard for quantifying the clinical severity of a 
lesion. For these reasons, Demer et al55 compared PET 
results with "stenosis flow reserve," a measurement cal-
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culated from static quantitative arteriographic dimen-
sions. Stenosis (or relative) flow reserve is defined as 
the maximum flow in the stenotic artery divided by the 
normal maximum flow in the absence of stenosis. It is 
independent of hemodynamic conditions, in contrast 
to coronary flow reserve, which depends on perfusion 
pressure, coronary venous pressure, arteriolar tone, and 
the strength of the hyperemic stimulus. 

Demer et al found that, of 193 patients, 115 had 
significant coronary artery disease (stenosis flow 
reserve >3), 37 had mild disease (stenosis flow reserve 
of 3 to 4), and the 41 remaining patients had essential-
ly normal coronary arteries (stenosis flow reserve >4). 
Increasing impairment of stenosis flow reserve corre-
lated with increasing subjective PET defect severity. In 
addition, for individual patients, the most severe PET 
score correlated with the calculated stenosis flow 
reserve of the patient's most severe coronary artery 
stenosis. 
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