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Calcium-channel antagonists:
mechanisms of action, vascular selectivities,
and clinical relevance

DAVID J. TRIGGLE, PhD

m The calcium-channel antagonists represent three separate structural categories of drugs. They share
a common action—the blockade of calcium-ion flow through one specific type of calcium channel.
The chemical heterogeneity of these agents is reflected in their pharmacologic and therapeutic
diversity. The calcium-channel antagonists enjoy significant use in cardiovascular medicine for the
treatment of hypertension, angina, and some cardiac arrhythmias. However, the 1,4-dihydropyridines,
the most potent antihypertensive calcium-channel blockers, lack antiarrhythmic properties. The
selectivity of action of calcium-channel antagonists rests upon a number of factors, including pathways
of calcium mobilization, types of channel activated, state-dependent interactions, and the pathological
state of the tissue. An understanding of these factors is important to the rational application of these

drugs and to the development of newer agents with different specificities.
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ALCIUM PLAYS CRITICAL roles in cel-
lular communication and regulation. Under
physiological conditions, the cell maintains
a low intracellular concentration of free
ionized calcium against large, inwardly directed con-
centration and electrochemical gradients. The trans-
membrane flow of calcium serves a dual role as a
depolarizing signal and as an intracellular second mes-
senget. The stimulus-evoked inward flow of calcium is
coupled to cellular response by intracellular calcium-
binding proteins, including the ubiquitous cal-
modulin.! Under pathological conditions, the uncon-
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trolled mobilization of calcium may constitute a lethal
signal, and such movements subsequent to cellular in-
sult or injury can lead irreversibly to cell destruction
and death.? The control of calcium homeostasis there-
fore represents a powerful route for the modulation of
cellular excitability and response.**

Calcium moves in and out of the cell and intracel-
lular storage sites in response to chemical, electrical,
pressure, and other physical stimuli (Figure 1). The loci
for these events are key sites at which to modulate
cellular excitability. Experimental agents are known®
that interact with all of the sites depicted in Figure I;
however, for the purposes of this discussion, we will
consider only the voltage-gated calcium channels lo-
cated on excitable cells, since these are the therapeutic
targets of the calcium-channel antagonists. These
channels are not unique to the cardiovascular system,
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FIGURE 1. Cellular regulation of calcium, showing sites of cal-
cium control at plasma membrane and intracellular sites. (1)
Sodium-calcium exchanger; (2) receptor-operated channels
(ROC); (3) voltage-gated channels (VGC); (4) “leak” and
nonselective cation channels; (5) adenosine triphosphate
(ATP)-dependent calcium uptake (pump) into sarcoplasmic
reticulum (SR); (6) calcium-release channel in SR; (7) ATP-
dependent calcium uptake (pump) in calmodulin (CM); and (8
and 9) calcium uptake and release in mitochondria (MITO).

TABLE 1
THERAPEUTIC USES OF CALCIUM-CHANNEL ANTAGONISTS

Antagonists
Verapamil  Nifedipine  Diltiazem

Uses (Class I)* (Class II)  (Class I1I)
Angina:

exertional . . 4

Prinzmetal’s 4+ 4+ it

variant ’ +++ ++4+ +++
Paroxysmal supraventricular

tachyarrhythmias e+ — Tt
Atrial fibrillation and flutter ++ - ++
Hypertension ++ . +
Hypertrophic cardiomyopathy + - -
Raynaud’s phenomenon ++ ++ 4
Cardioplegia + + +
Cerebral vasospasm :

(posthemorrhage) - + -

R, e ——
*Provisional and preliminary classification by World Health Organization
Refers to nimodipine

+++, very common use
++, common use

+, less common use

— , not used
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but their activation and blockade are particularly im-
portant to the control of cardiovascular function.

Calcium-channel activation in response to
depolarizing stimuli is an important excitation-con-
traction coupling process in vascular smooth muscle.
Calcium entry also triggers the release of intracellular
calcium through release channels and storage sites in
the sarcoplasmic reticulum. Calcium entry through
these voltage-gated calcium channels contributes to
the plateau phase of the cardiac action potential un-
derlying inotropic events and is the dominant inward
current at the sinoatrial and atrioventricular nodes
underlying pacemaker function.*

The calcium-channel antagonists verapamil,
nifedipine, and diltiazem (Figure 2) block voltage-
gated calcium channels in vascular smooth muscle to
decrease tone and lower blood pressure. In cardiac
muscle, verapamil blocks conduction and reduces car-
diac rate and contractility—properties shared by dil-
tiazem but lacking in the 1,4-dihydropyridines, which
as a class have very little direct effect on the heart.
These properties of verapamil underlie its class IV an-
tiarrhythmic activity. The therapeutic profiles of these
agents have both quantitative and qualitative differen-
ces (Table 1).

Several lines of biochemical evidence indicate that
the three major therapeutic groups of calcium-channel
antagonists—1,4-dihydropyridines  (nifedipine),
phenylalkylamines (verapamil), and benzothiazepines
(diltiazem)—act at separate sites.”” These sites are
linked to one another (by complex allosteric interac-
tions) and to the permeation and gating machinery of
the channel (Figure 3). Despite these biochemical and
therapeutic differences, the calcium-channel an-
tagonist binding sites are located on a single protein,
the alpha; subunit of the oligomeric assembly that con-
stitutes the voltage-gated calcium channel (Figure 4).7

Some newly developed experimental groups of cal-
cium-channel antagonists probably act at sites distinct
from the three already described.>® In fact, there may be
as many as six or seven completely separate drug-bind-
ing sites associated with the calcium channel. Drugs
that act at these other sites may reasonably be expected
to exhibit different therapeutic activities from those
currently available. The 1,4-dihydropyridine site is also
home to a group of experimental drugs, the calcium-
channel activators (Figure 2). Although structurally
similar to nifedipine, these activators or agonists have
exactly opposing properties: they open or maintain the
opening of calcium channels and so are positive-in-
otropic vasoconstrictive species.””
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The calcium channel may be regarded as a phar-
macologic receptor': it possesses specific binding sites
for both activators and antagonists. These sites are
coupled to channel function, and we expect to find
that they are regulated in experimental and clinical
disease states. These latter expectations are being in-
creasingly realized.

SELECTIVITY OF ACTION

An important expression of the selectivity of action
of calcium-channel antagonists is seen in their relative
cardiac and vascular effects (Table 2).

Verapamil, and to a lesser extent diltiazem, exhibit
both cardiac depressant and vasodilating properties
over similar therapeutic dose ranges.!"™ With normal
ventricular function, the direct myocardial depressant
effects of verapamil and diltiazem are counterbalanced
by afterload reduction and are of little clinical sig-
nificance. However, these cardiac depressant proper-
ties undetrlie the limitations of combining verapamil
with beta-blockers. They also underlie the deleterious
effects of administering verapamil or diltiazem to
patients with left ventricular dysfunction.

In marked contrast, the cardiovascular pharmacol-
ogy of the 1,4-dihydropyridines is generally dominated
by their vasodilatory properties that can generate
reflex cardiac activation."* However, nifedipine can
also exhibit cardiodepression; this can limit its applica-
tion in some patients with severe left ventricular dys-
function.”

These differences can be quantified by a vascular-
cardiac selectivity ratio that reflects vascular relaxing
and cardiac depressant activities under defined condi-
tions (Table 3)."%'7 One specific determination of the
ratio is a comparison of inhibitory potencies in rat
portal vein and papillary muscle. The ratio changes
according to experimental conditions and species: rat
myocardium is significantly less sensitive to the cal-
cium-channel antagonists than that of other species,’
and other vascular tissues will show different sen-
sitivity than the portal vein. However, the ratio does
indicate the qualitative directions of the vascular-car-
diac selectivity profile. These differences in selectivity
of action are also accompanied by different side-effect
profiles (Table 4), those for the 1,4-dihydropyridines
being dominated by vascular actions.

The cardiovascular selectivities of action of the cal-
cium-channel antagonists differ not only between the
major structural groups, but also within a single struc-
tural group. Second-generation calcium antagonists of
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FIGURE 2. Chemical structures of the calcium antagonists
nifedipine, verapamil, and diltiazem, and the 1,4-dihydro-
pyridine calcium-channel activators Bay K 8644 and PN 202
791.
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FIGURE 3. Proposed arrangement of the three primary drug
binding sites at the L-type calcium channel.

TABLE 2
PHARMACOLOGICAL EFFECTS
OF CALCIUM-CHANNEL ANTAGONISTS

Heart AV nodal Myocardial Arteriolar
Drug rate conduction contractility vasodilation
Verapamil N N N ™
Nifedipine T — 1 ™
Diltiazem d d { T

R »
Number of arrows designates extent of effect
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FIGURE 4. Schematic arrangement of the subunits making up
the voltage-gated calcium channel. The alphaj subunit carries
the drug binding sites and channel function. The other sub-
units also play important roles in channel function (reference
7). P, sites of phosphorylation; S-S, disulfide bridges.

TABLE 3
VASCULAR-CARDIAC SELECTIVITY RATIOS
OF SELECTED CALCIUM-CHANNEL ANTAGONISTS

Calcium-channel antagonist ~ Vascular-cardiac selectivity ratio

Verapamil 1
Diltiazem 5
Nifedipine 15
Felodipine 120
TABLE 4

SIDE EFFECTS OF CALCIUM-CHANNEL ANTAGONISTS

Diltiazem Nifedipine =~ Verapamil
Ankle edema 5%-10% 5%-10% 5%-10%
Constipation 0%-5% 0% >20%
Dizziness 5%-10% 0%-10% 5%-10%
Facial flushing 0%-5% 10%-20% 5%-10%
Headaches 0%-5% 5%-10% 0%-5%
Ischemia 0% 0%-5% 0%
Rash 0%-5% 0% 0%-5%
Tachycardia 0% 5%-10% 0%
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the 1,4-dihydropyridine class (Figure 5), including
felodipine, may have significantly higher vascular-car-
diac selectivity ratios than nifedipine (Table 3). This
enhanced vascular selectivity may offer clinical ad-
vantage in the treatment of hypertension, particularly
in patients with compromised cardiac contractile or
conductive function. Other 1,4-dihydropyridines may
exhibit a regional vascular selectivity. Nimodipine has
preferential actions on the cerebral vasculature''"*%
and nisoldipine is reported to have selectivity for the
coronary vasculature.?"*

Selectivity of action of the calcium-channel an-
tagonists may arise from a number of factors either
alone or in combination, including (1) phar-
macokinetic factors; (2) mode of calcium mobilization,
(3) class and subclass of calcium channel activated; (4)
state-dependent interactions; and (5) pathological
state of the tissue.

Pharmacokinetic factors

Calcium-channel antagonists share both similarities
and differences in their pharmacokinetic properties.
They are all protein-bound species, and they all show
extensive first-pass metabolism.*” However, they
present a wide range of structures; for example,
verapamil and diltiazem are largely protonated at
physiological pH, whereas nifedipine and most other
1,4-dihydropyridines are neutral and nonpolar. The
partition coefficients and distribution properties differ
significantly among 1,4-dihydropyridines, and selec-
tive accumulation within different vascular beds or
organ systems may contribute to the observed selec-
tivity of action.”* The higher membrane-water parti-
tion coefficient of nimodipine relative to nifedipine
may underlie its higher apparent distribution volume
in the brain and its cerebral selectivity.” Similarly, the
very high partition coefficient of amlodipine likely
contributes to its slow onset and prolonged duration of
action.”

Mode of calcium mobilization

Calcium-channel antagonists affect only calcium
entry through voltage-gated calcium channels, and an-
tagonism will occur only at activated calcium channels.
Direct mobilization of calcium through receptor-
operated channels or from intracellular stores is
generally unaffected by these agents. Since different
calcium mobilizing systems frequently coexist in ex-
citable tissues, the effects of calcium-channel an-
tagonists depend upon the balance of activities in these
systems according to physiologic state and
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demands.*'®*” Furthermore,
the vasodilatory effects of
calcium antagonists ac-
tivate cardiovascular reflex
effects that may mask the
effects on individual organ
systems.

A tissue whose response
depends only on pathways
that are not voltage-gated
will be insensitive to cal-
cium-channel antagonists.
Calcium-channel an-
tagonists have not achieved
clinical significance as an-
tiasthmatic agents despite
the presence of voltage-
gated calcium channels and
calcium-channel antago-
nist binding sites in
respiratory smooth
muscle.”®” This is almost
certainly due to the
dominance of calcium
mobilization by other path-
ways, notably those linked
to phosphatidylinositol
turnover and the produc-
tion of inositol triphos-
phate.”

Differential activation
and blockade of calcium-
mobilizing pathways may
also underlie the actions of
calcium-channel antago-
nists on kidney hemo-
dynamics and function.’*
Total renal vascular resis-
tance is determined by the
sum of the (series-ar-
ranged) segmental resis-

tances of the preglomerular afferent arterioles and
postglomerular efferent arterioles serving the
glomerular capillary bed. Calcium-channel an-
tagonists may affect primarily the afferent arterioles
after renal vasoconstriction by norepinephrine or an-
giotensin Il and, thus, partially relieve renal
vasoconstriction produced by these agents (Figure 6).
However, the glomerular filtration rate is generally
restored or even augmented by calcium-channel an-
tagonists because selective dilation of the afferent
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FIGURE 5. Structural formulas of some second-generation 1,4-dihydropyridine calcium-chan-
nel antagonists.
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FIGURE 6. The effect of the 1,4-dihydropyridine nitrendipine on renal hemodynamics in the
isolated perfused rat kidney. The kidneys were treated with nitrendipine following potassium
chloride (KCl), angiotensin II (AIl), or norepinephrine (NE). Graph A shows renal perfusate
flow (RPF), and graph B shows the glomerular filtration rate (GFR). Reproduced with permis-
sion from Loutzenhiser R, Epstein M, Horton C. Modification by dihydropyridine-type cal-
cium antagonists of the renal hemodynamic response to vasoconstrictors. J Cardiovas Phar-
macol 1987; 9(Suppl 1):S70-S75.

arteriole increases glomerular filtration pressure in the
face of maintained efferent tone. These differential
effects of calcium-channel antagonists are very
stimulus-dependent and vary according to physiologic
and pathologic state.

Whether these effects of calcium-channel an-
tagonists on renal hemodynamics underlie their
natriuretic and diuretic actions in hypertensive in-
dividuals remains to be determined.”> These effects,
desirable in an antihypertensive agent, may arise from
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TABLE 5
CLASSIFICATION OF VOLTAGE-GATED CALCIUM CHANNELS

L R AT ———
Channel class

Property L T N P
Conductance (pS) 25 8 12-20 10-12
Activation threshold high low high moderate
Inactivation rate slow fast moderate rapid
Permeation Bal*>Ca®* Ba**=Ca?* Ba?*>Ca®* Bal*>Ca®
Function E-Coupling in Cardiac SA node: Neuronal only: Neuronal only?:
cardiovascular system, neuronal spiking neurotransmitter release heurotransmitter release
smooth muscle, repetitive spike
endocrine cells activity in neurons
and some neurons and endocrine cells
Pharmacologic sensitivity
1,4-Dihydropyridines Sensitive Insensitive Insensitive Insensitive
(Activators/antagonists)
Phenylalkylamines
Benzothiazepines
w-Conotoxin Sensitive? (some) Insensitive Sensitive Insensitive
Qctanol, amiloride Insensitive? Sensitive Insensitive ?
Funnel web spider toxin Insensitive Insensitive Insensitiven Sensitive

a redistribution of blood flow, from direct effects on the
calcium-dependent tubular reabsorption of sodium, or
from inhibition of the tubuloglomerular feedback
response of the macula densa.**** Calcium-channel an-
tagonists may also exert clinically different effects on
urinary protein excretion. For example, in diabetic
patients, diltiazem and nifedipine had opposing effects
(decreasing and increasing protein excretion, respec-
tively, with corresponding changes in renal dysfunc-
tion).* In other studies, nifedipine and nicardipine
also either decreased protein excretion or left it un-
changed.* Since protein excretion is determined in
part by glomerular capillary pressure, any difference in
effects among calcium-channel antagonists may be as-
sociated either with different origins of arteriolar tone
according to the disease state and its severity, or with
different effects on the preglomerular and
postglomerular arteries.

Classes and subclasses of calcium channels

There are at least four major classes of voltage-gated
calcium channels, each with its unique
electrophysiologic and pharmacologic profile (Table
5).% Channels with large, long-lasting conductances
(L channels) dominate in the cardiovascular system. L
channels are sensitive to the clinically available cal-
cium-channel antagonists, and they support excita-
tion-contraction coupling in vascular and cardiac
muscle. A transient (T) channel, probably involved in

622 CLEVELAND CLINIC JOURNAL OF MEDICINE

both peripheral and central pacemaker processes,
opens and closes rapidly and is insensitive to the cal-
cium-channel antagonists. A third channel, the N
channel, is of particular importance in the central
nervous system and is also insensitive to the calcium-
channel antagonists. This may explain the general lack
of effectiveness of these agents under most conditions
of use. P channels, sensitive to funnel web spider toxin
(FTX), are also found only in neurons.

Molecular biology studies permit the tentative con-
struction of an evolutionary tree of calcium channels,
from an ancestral type of considerable antiquity to at
least half a dozen types and subtypes, including those
found in skeletal, cardiac, and smooth muscle, and in
neuronal and endocrine cells, with a correspondingly
diverse pharmacology.* This pharmacological clas-
sification will be of importance in the future genera-
tion of new categories of calcium-channel drugs with
therapeutic properties and uses substantially different
from those currently available.#

State-dependent interactions

State-dependent interactions of channel an-
tagonists with channels constitute an important base
for selectivity of action. Moreover, this base is suscep-
tible to both coarse and fine tuning.

The voltage-gated calcium channel exists in three
states or families of states—resting, open and ac-
tivated, and closed and inactivated (Figure 7). Equi-
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FIGURE 7. The voltage-gated calcium-channel cycle of resting
(R), open (O), and inactivated (I) states. Each state may offer
preferential affinity or access to drug species (routes A and B).
The distribution between the states is determined by
membrane potential and frequency of stimulation. K indicates
rate constant (forward and backward) for interconversion
between states. “Persistent” and “repetitive” refer to
depolarization and indicate maintained and rhythmic changes,
respectively, in membrane potential. The asterisks indicate the
drug-bound state.

librium between these states is determined by several
factors, including channel phosphorylation and
membrane potential. Membrane depolarization opens
the channel and prolonged membrane depolarization
causes channel inactivation. Drugs may have different
affinities and different access to their specific binding
sites depending on channel state,”* and the apparent
affinity of a drug may be determined by its specific
affinity for or access to each of the separate states and
the distribution between these states. The latter is
determined by physiologic and pathologic factors in-
cluding membrane potential, modulation by
neurotransmitter-directed phosphorylation, G protein
interaction or other biochemical change, and tissue
pathology.

Calcium-channel antagonists show voltage-depend-
ent binding: their affinity increases with decreasing
membrane potential. This is consistent with selective
binding or access to the inactivated state of the channel
(increasing depolarization increases drug affinity).**
Additionally, some calcium-channel antagonists,
notably the charged verapamil and diltiazem, show fre-
quency-dependent interactions whereby apparent af-
finity increases with increasing frequency of depolariz-
ing stimulus.* This property underlies the selective
class IV antiarrhythmic properties of verapamil and
diltiazem that are absent in nifedipine and other 1,4-
dihydropyridines (Figure 2). Similar considerations un-
derlie the antiarrhythmic activities of class I agents at
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Membrane potential

FIGURE 8. Relationship between membrane potential and
channel-opening probability (POpen). The relationship (solid
line) may be shifted in hyperpolarizing or depolarizing direc-
tions (dashed lines) by the influence of neurotransmitters and
other modulators.

the cardiac Na" channel.*” This important difference
between the three structural classes of antagonist likely
reflects the necessity of verapamil and diltiazem, as
charged and more polar species, to access the inac-
tivated state through the open state of the channel. In
contrast, the nonpolar and noncharged 1,4-
dihydropyridines can access their preferential binding
state directly through the membrane phase.
State-dependent interactions can account for both
quantitative and qualitative differences in selectivity
of the calcium-channel antagonists. The greater
potency of the antagonists in hypertensive vs nor-
motensive vascular smooth muscle likely arises from
the greater tone and depolarization in the former.
Similarly, differential dilation of vascular beds may
arise from similar differences in existing tone.* These
effects of membrane potential upon drug interactions
at the voltage-gated L channel have been measured
largely by electrophysiologic techniques. However, a
number of studies using direct radioligand binding
techniques have shown that cardiac and vascular cell
depolarization increases drug affinity.**°
Voltage-dependent interactions can be fine-tuned
through the use of neurotransmitters and hormones to
modulate the voltage-dependence of channel kinetics.
The channel-opening probability is determined by
membrane potential (Figure 8). This curve can be
shifted in the depolarizing or hyperpolarizing direc-
tions by neurotransmitters and other modulators to
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TABLE 6

ADDITIONAL AND POTENTIAL USES

OF CALCIUM-CHANNEL ANTAGONISTS
L e L
Cardiovascular

Atherosclerosis

Cardioplegia

Cerebral ischemia, focal

Cerebral ischemia, global

Congestive heart failure

Hypertrophic cardiomyopathy

Migraine

Mpyocardial infarction

Peripheral vascular diseases

Pulmonary hypertension

Subarachnoid hemorrhage

Nonvascular smooth muscle
Achalasia

Asthma

Dysmenorrhea

Eclampsia

Esophageal spasm

Intestinal hypermotility
Obstructive lung disease
Premature labor

Urinary incontinence

Other
Aldosteronism
Antimalarial drug resistance

Cancer chemotherapy (multiple drug resistance)
Epilepsy

Glaucoma

Manic syndrome

Motion sickness

Spinal cord injury
Tinnitus

Tourette’s disorder
Vertigo

SO

produce attendant changes in voltage-dependent drug
interactions.”® A shift in the hyperpolarizing direction
will move the channel equilibrium at a given
membrane potential to the open and inactivated state
and will increase the apparent affinity of the calcium-
channel antagonist.

Pathologic state of tissue

A number of disorders are associated with specific
alterations in the numbers and functions of voltage-
gated calcium channels.’®***? Lambert-Eaton syndrome,
associated with small lung-cell carcinoma, is an autoim-
mune disorder in which circulating antibodies directed
against nerve-terminal calcium channels are associated
with a dysfunction in neurotransmitter release. Also,
some reports indicate that the Syrian cardiomyopathic
hamster has an overexpression of cardiac calcium chan-
nels, and a rodent model of congestive heart failure
exhibits down-regulation of cardiac calcium-channel
numbers.
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TABLE 7
CALCIUM-CHANNEL DEPENDENCY
OF ATHEROSCLEROTIC EVENTS
SO SOOI OO OSSR USRI
Calcium-channel-dependent events
Smooth muscle events

contraction

migration

proliferation

transformation

Neurotransmitter release

Growth factor release

Growth factor response
Calcium-channel-independent events
Endothelial cell function

Platelet function

Cholesterol processing

Low-density lipoprotein processing
Macrophage function

Neuronal calcium channels increase in experimen-
tal lead intoxication and also after chronic alcohol
ingestion.”® The latter observation probably accounts
for the clinical utility of calcium antagonists for
patients suffering seizures from alcohol withdrawal.
Neuronal calcium channels also show very large
decreases as a function of age in experimental animals;
it is tempting to speculate that these changes are as- .
sociated with the cognitive and behavioral deficits that
accompany aging.”

The selectivity of action of the calcium-channel
antagonists is determined by the extent to which chan-
nel number and function are affected by pathological
states. It is likely that specific diseases will be as-
sociated with defined changes in calcium channel
function as a contributory or causal factor.

EXPERIMENTAL USES

Calcium-channel antagonists have been used ex-
perimentally in a wide range of disorders outside the
cardiovascular system, including disorders of nonvas-
cular smooth muscle, central nervous system disorders
(eg, vertigo, tinnitus, Tourette’s syndrome), and in-
dications that are not related to voltage-gated calcium
channels, such as multiple drug resistance for cancer
chemotherapeutic agents and antimalarial drug resis-

tance (Table 6).

Effects on atherogenesis

In recent years, clinical trials have indicated that
these agents may affect atherogenesis.* In the Interna-
tional Nifedipine Trial on Antiatherosclerotic Therapy,
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nifedipine modestly re-
duced the incidence of new
lesions in coronary arteries
but was without effect on
existing lesions.”® Clinical
studies with nifedipine and
the other classes of cal-
cium-channel antagonists
parallel earlier experimen-
tal studies, principally in
cholesterol-fed rabbits,
with these agents.*® At issue *
is the extent to which the
antiatherogenic properties
of the calcium-channel an-
tagonists are related to cal-
cium-channel antagonism.

The “atherogenic cas-
cade”—the sequence of
events that lead or con-
tribute to atherosclerosis
(Figure 9)—contains a
number of processes that
are calcium-dependent and
sensitive to calcium-chan-
nel antagonists, including
smooth muscle cell
proliferation and migra-
tion, the actions of growth
factors, and, possibly,
processes that depend on
chemotactic factor. These
may be targets for the clini-
cal antiatherogenic actions
of calcium-channel an-
tagonists. However, other
properties of calcium-
channel antagonists (in-
cluding antioxidative ef-
fects, inhibition of platelet
function, enhancement of
LDL receptor function, and promotion of cholesterol
ester metabolism) that are not obviously related to
calcium-channel antagonism may also contribute to
the antiatherogenic activities observed experimentally
and clinically. It remains to be determined whether
long-term administration of calcium antagonists in-
fluences processes other than voltage-gated calcium
channels, and whether these processes contribute to
the antiatherogenic actions and other possible long-
term effects of calcium-channel antagonist administra-
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FIGURE 9. The “atherogenic cascade”—the sequence of events that lead or contribute to
atherosclerosis. Steps known or believed to be sensitive to calcium-channel antagonists at
cardiovascular concentrations are marked with an asterisk. Reproduced with permission from
Born GVR, Poole-Wilson P, Triggle D]. Calcium antagonists and atherosclerosis. London:

tion. Such processes (Table 7) may also contribute to
the selectivity of action of the calcium-channel an-
tagonists.

SUMMARY

Calcium-channel antagonists interact specifically at
a set of binding sites associated with a single class of
voltage-gated calcium channel. They differ quantita-
tively and qualitatively in their activities. In the car-
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diovascular system (their primary therapeutic target),
verapamil, diltiazem, and nifedipine present a broad
range of vascular-cardiac selectivities that define their
general therapeutic applications, their contraindica-
tions with other classes of cardiovascular drugs, and
their side-effect profiles.

The new generation of calcium-channel antagonists,
particularly the 1,4-dihydropyridine class, indicates
that vascular-cardiac selectivity differs not only be-
tween the three major structural classes of drug but also
within a structural class. Enhanced vascular-cardiac
selectivity is observed with some 1,4-dihydropyridines,
including felodipine, and enhanced regional vascular
selectivity is observed with other 1,4-dihydropyridines
including nimodipine and nisoldipine. A number of
factors, including voltage-dependent actions and phar-
macologically distinct channel subtypes, contribute to
the observed selectivity profiles.

Second-generation calcium-channel antagonists
The specific cardiovascular advantages gained from
the new generation of vascular-selective calcium-
channel antagonists are twofold. Regional vascular
selectivity permits selective vasodilation without
generalized hemodynamic changes. This quality under-
lies the cerebral selectivity of nimodipine, and vascular
selective antagonists may be developed for other
regions, including the pulmonary and renal beds.
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