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From the “Biostatistics and Epidemiology Lecture Series, Part 1” 

Chi-square and Fisher’s exact tests

T his article aims to introduce the statistical 
methodology behind chi-square and Fisher’s 
exact tests, which are commonly used in medi-
cal research to assess associations between cat-

egorical variables. This discussion will use data from 
a study by Mrozek1 in patients with acute respiratory 
distress syndrome (ARDS). This was a multicenter, 
prospective, observational study: multicenter because it 
included data from 10 intensive care units, prospective 
because the study collected the data moving forward 
in time, and observational because the study investiga-
tors did not have control over the group assignments 
but rather used the naturally occurring groups. The 
study objective was to characterize focal and nonfocal 
patterns of lung computed tomography (CT)-based 
imaging with plasma markers of lung injury.

The primary grouping variable was type of ARDS 
(focal vs nonfocal) as determined by CT scans and 
other lung imaging tools. In this study, there were 
32 (27%) patients with focal ARDS and 87 (73%) 
patients with nonfocal ARDS. What will be impor-
tant, however, is classifying the type of variables 
because this determines the type of analyses per-
formed. Type of ARDS is a categorical variable with 
2 levels.

The primary study endpoint was plasma levels of 
the soluble form of the receptor for advanced glyca-
tion end product. There were also a number of sec-
ondary study endpoints that can be grouped as either 
patient outcomes or biomarkers. Patient outcomes 
included the duration of mechanical ventilation 
and both 28- and 90-day mortality. Levels of other 
biomarkers included surfactant protein D, soluble 
intercellular adhesion molecule-1, and plasminogen 
activator inhibitor-1. 

This article focused on the secondary outcome of 
90-day mortality beginning at disease onset. Again, 
we are interested in classifying this variable, which is 
categorical with 2 levels (yes vs no). So the scenario 
is that we want to assess the relationship between the 
type of ARDS (focal vs nonfocal) and 90-day mortal-
ity (yes vs no). In its most basic form, this scenario 
is an investigation into the association among 2 cat-
egorical variables. 

When there are 2 categorical variables, the data 
can be arranged in what is called a contingency table 
(Figure 1). Because both variables are binary (2 lev-
els), it is called a 2 × 2 table. However, a contingency 
table can be generated for 2 categorical variables with 
any number of levels—in that case, it is called an r 
× c table, where r is the number of levels for the row 
variable and c is the number of levels for the column 
variable. The actual raw counts or frequencies are 
recorded inside the table cells. The cell counts are 
often referred to as observed counts and thus the nota-
tion (Oij) is used. The subscript i identifi es the specifi c 
level of the row variable, and in this example it can 
equal 1 or 2 since the row variable is binary. Similarly, 
the subscript j identifi es the specifi c level of the col-
umn variable and in this example it can equal 1 or 
2 since the column variable is binary. Therefore, O11 
represents the number of patients who have the row 
variable = level 1 and the column variable = level 1. 

In addition to the row and column variable cells, 
there are also the margin totals. These totals are either 

 Row Column variable
 variable 1 2 

Total

 1 O11 O12 n1+

 2 O21 O22 n2+

 Total n+1 n+2 n

FIGURE 1. Example of a contingency table for 2 categorical variables, 
each with 2 levels (2 × 2 table).
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the row margin total (summing across the row) or the 
column margin total (summing down the column). 
For example, n1+ is the sum of the row where the row 
variable equal 1 (O11 + O12 = n1+). Finally, at the very 
bottom right corner is the grand total, which equals 
the sample size.  

The goal is to test whether or not these 2 cat-
egorical variables are associated with each other. The 
null hypothesis (Ho) is that there is no association 
between these 2 categorical variables and the alterna-
tive hypotheses (Ha) is that there is an association 
between these 2 categorical variables. 

The next step is to translate the generic form of the 
hypotheses into hypotheses that are specifi c to the 
research question. In this case, the null hypothesis is 
that mortality is not associated with lung morphol-
ogy and the alternative hypothesis is that mortality is 
associated with lung morphology. 

The contingency table cells can be populated with 
the numbers found in the article. It has our outcome 
of focus—mortality at day 90—both the count and 
the percent. The results are broken down by type of 
ARDS (focal vs nonfocal) as follows: 

• Focal ARDS = 6 patients (21.4%) 
• Nonfocal ARDS = 35 patients (45.5%). 
From these numbers, we can build the contingency 

table that corresponds to the association among lung 
morphology (type of ARDS) and 90-day mortality 
(Figure 2). 

First, the row variable is lung morphology, and 
it has two levels (focal vs nonfocal). Next, the col-
umn variable is 90-day mortality and it has 2 levels 
(yes vs no). Finally, the table must be populated, but 
be careful not to assume that there are no missing 
data. Begin with the cell counts: there were 6 focal 
ARDS patients and 35 nonfocal ARDS patients 
who died within 90 days. These two numbers popu-
late the fi rst column and result in a column total of 
41. Next, use the reported percentages to calculate 
the row totals. Six is 21.4% of 28, so the fi rst row 
total is 28. Thirty-fi ve is 45.5% of 77, so the second 
row total is 77. If there are 28 patients with focal 
ARDS and 77 with nonfocal ARDS, then the grand 
total is 28 + 77 = 105. The remaining values can 
be obtained by subtraction. If there are 105 total 
patients and 41 die within 90 days, then 105 − 41 = 
64 patients who do not die within 90 days and this 
is the second column total. Similarly, if there are 28 
focal ARDS patients and 6 die within 90 days, then 
28 − 6 = 22 patients who do not die within 90 days. 
Lastly, if there are 77 nonfocal ARDS patients and 
35 die within 90 days, then 77 − 35 = 42 patients 

who do not die within 90 days. Now the contin-
gency table is complete.

Once the contingency table is built, the question 
becomes, “Is lung morphology associated with 90-day 
mortality?” To answer that question, we need to know 
how many patients one would expect in each table cell 
if the null hypothesis of no association is true. When 
conducting a hypothesis test, one always assumes that 
the null hypothesis is true and then gathers data to 
see how well the data aligns with that assumption.

So one must calculate how many patients to expect 
in each of these cells if lung morphology is not associ-
ated with 90-day mortality. One way to address this 
question is to ask these 2 questions: 

(1) Overall, what proportion of patients die by day 
90? Looking at the constructed contingency table, 
that answer would be 39%. This was calculated by 
taking the total number of patients who died by day 
90 and dividing it by the total number of patients, 
41/105 = 39%. This gives the overall proportion, 
based on the data, who would die by day 90. 

(2) How many of the focal ARDS patients would 
be expected to die by day 90? Now it is not overall, but 
rather we are limiting the question to the focal ARDS 
group. To obtain the answer, multiply the overall pro-
portion of patients who die by day 90 by how many 
focal ARDS patients are in the study. Essentially, take 
the answer from the previous question and multiply it 
by the total number of focal ARDS, which is 28. The 
result is (41/105) × 28 = 10.9. Thus, if there is no 
association among long morphology and 90-day mor-
tality, one would expect 10.9 focal ARDS patients to 
die by day 90. 

Now 10.9 is a very specifi c answer for a specifi c 
contingency table, but the answer could be written 
in general terms. Basically, 3 numbers were used in 
calculating the solution: the row margin, the column 
margin, and the grand total. The general formula is 
the following:

H0: mortality is not associated with lung morphology
H1: mortality is associated with lung morphology

 Mortality at day 90
   Yes No
 Lung Focal ARDS 6 22 28
 morphology Nonfocal ARDS 35 42 77
   41 64 105

FIGURE 2. Study-specifi c hypothesis, study frequency counts, and 
resulting 2 × 2 contingency table. Patient numbers are from the 
Mrozek study.1 ARDS = acute respiratory distress syndrome
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The notation Eij is used to represent the expected 
count assuming the null hypothesis of no association 
among the row and column variables is true. To cal-
culate the expected count, take the ith row total times 
the jth column total and divide by the grand total. 

In the lung morphology and mortality example, 
what is the expected number of deaths within 90 
days among the nonfocal ARDS patients? This is the 
second row and the fi rst column (E21). Applying the 
formula, one multiplies the total for the second row 
by the total for the fi rst column and then divides by 
the grand total, (77 × 41)/105 = 30.1. This calcula-
tion is repeated for each of the 4 cells. 

Because we now know the observed cell count and 
the expected cell count (under the null hypothesis), 
we can compare the observed and expected counts to 
see how well the data aligns with the null hypothesis. 
This is what the chi-square test does, and the test sta-
tistic is calculated as follows:

The sigma (Σ) means addition, so the calculation is 
performed on each individual cell in the contingency 
table and then the results are summed. A 2 × 2 table 
has 4 cells and thus 4 numbers will be summed. For 
each cell, the formula compares the observed to the 
expected. Basically, it computes how similar they are 
(that is the O minus E part). Because the differences 
will be positive for some cells and negative for oth-
ers, the differences are squared to avoid cancellation 
when you add them. Finally, each squared difference 
is divided by the expected count to standardize the 
calculation. 

Intuitively, if the observed counts (Oij) are simi-
lar to the expected counts under the null hypothesis 
(Eij), then these 2 numbers will be very close to each 
other. When taking the difference between them or 
subtracting them, the result is a small number. When 

squaring a small number, one obtains a really small 
number. And adding up a bunch of really small num-
bers results in a small number. So the test statistic is 
going to be small. That means that the resulting P 
value is going to be large. What is a P value? Think 
of it as an index of compatibility. How compatible 
is the data with the null hypothesis? Here, you get 
a large index of compatibility. That means that the 
data aligns nicely with the null hypothesis and one 
fails to reject the null. 

Now, think about the alternative scenario. If the 
observed counts (Oij) are wildly different from the 
expected counts under the null hypothesis (Eij), then 
these 2 numbers will be quite different. When taking 
the difference between them or subtracting them, the 
result is a big number. When squaring a big number, 
one obtains a really big number, and adding up a 
bunch of really big numbers results in a large number. 
So the test statistic is going to be large. That means 
that the resulting P value is going to be small. And if 
you think of a P value as an index of compatibility, the 
data and the null hypothesis are not very compatible. 
That means that the data does not align nicely with 
the null hypothesis and one rejects the null. This is 
the general idea of the chi-square test. It assesses how 
compatible the data is with the null hypothesis that 
the 2 categorical variables are not associated. 

To obtain the actual P value, the distribution of 
the test statistic (under the null hypothesis) is used to 
calculate the area under the curve for values equal to 
the test statistic or more extreme. The described test 
statistic has an approximate chi-square distribution 
with (r − 1)(c − 1) degree of freedom. Recall that r is 
the number of levels of the row variable and c is the 
number of levels of the column variable. Our example 
is a 2 × 2 table, so the test statistic has an approxi-
mate chi-square distribution with (2 − 1)(2 − 1) = 1 
degree of freedom. 

Now that the chi-square test has been fully 
described, the assumptions for the test must be dis-
cussed. It is important to know when you should 
or should not perform this test. The chi-square test 
assumes that observations are independent. This 
means that the outcome for one observation is not 
associated with the outcome of any other observa-
tion. This principle can be violated when multiple 
measurements are taken over time or when multiple 
measurements are taken from one patient.

Another assumption is that the chi-square large 
sample approximation just described is appropriate. 
In other words, no more than 20% of the expected 
counts (Eij) are less than 5. For a 2 × 2 table, how 

Eij =
(ith row total)(jth column total)

grand total =
ni+n+j

n

E11 =
(1st row total)(1st column total)

grand total

=
(28)(41)

105 = 10.9

E12 =
(1st row total)(2nd column total)

grand total

=
(28)(64)

105 = 17.1

E21 =
(2nd row total)(1st column total)

grand total

=
(77)(41)

105 = 30.1

E22 =
(2nd row total)(2nd column total)

grand total

=
(77)(64)

105 = 46.9

χ2 = Σ Σ
(Oij – Eij)

2

Eij

22

i = 1 j = 1
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many cells do you have? Four. So if even one of those 
4 happens to have an expected count less than 5, this 
assumption is violated. For a 2 × 2 table, none of the 
expected counts can be less than 5. 

Returning to the lung morphology and mortality 
example, were the assumptions met? The data consist 
of 105 unique patients. Thus, we can assume that they 
are independent. The minimum expected count was 
10.9, which is not less than 5. Therefore, the assump-
tions for the chi-square test are met. Next, the test 
statistic is calculated using the observed and expected 
counts. For each cell, subtract the expected count 
from the observed count, square it, and divide by the 
expected count. Then, add the 4 resulting numbers to 
obtain the test statistic of 4.92. 

Finally, compute the area under the chi-square 
distribution with 1 degree of freedom, χ2

(1), at the 
test statistic and values more extreme. In this case, 
values more extreme are values greater than the test 
statistic. Here, the area under the curve to the right 
of 4.92 is .027 (Figure 3). This is the P value, which 
indicates that the data and the null hypothesis have 
very low compatibility. In this example, the area 
under the curve to the right of 4.92 is .027 (Figure 
3). This is the P value, which indicates that the data 
and the null hypothesis have very low compatibility. 
Thus, the decision is to reject the null hypothesis. 
The conclusion is that lung morphology is associ-
ated with 90-day mortality (P = .027). To describe 
that association, one looks at the contingency table 
and fi nds a reduction in 90-day mortality with focal 
patterns compared to nonfocal patterns (21.4% vs 
45.5%, respectively). The P value reported in the 
article is .026. Our hand calculation was .027, which 
is slightly off due to rounding. In summary, the sce-
nario is an investigation into the association among 
2 categorical variables, and, thus, a test to consider is 
the chi-square test, if assumptions are met.

In another example in the same study, the authors 
investigate whether any baseline characteristics are 
associated with lung morphology. For example, is 
neurology, specifi cally Parkinson disease (yes vs no), 
associated with lung morphology (focal vs nonfo-
cal)? Again, the scenario is an investigation into the 
association between 2 categorical variables, so a chi-

square test should be considered. 
To start, build a contingency table arbitrarily plac-

ing lung morphology as the row variable and Par-
kinson disease as the column variable. Populate the 
contingency table based on the counts and percent-
ages reported in the article (Figure 4). Next, check 
that the assumptions of the chi-square test are met. 
Are the observations independent? Again, because 
these are unique patients, we consider this assump-
tion met. Since this is a 2 × 2 table, are all of the 
expected counts greater than 5? Calculations of the 
expected counts obtained the following: 1.1, 30.9, 
2.9 and 84.1. Here, 2 of the 4 expected counts are 
less than 5. Therefore, methods that use large sample 
approximation, like the chi-squared test, may not be 
an appropriate choice. 

Instead of using methodology that is an approxi-
mation, consider an exact test such as Fisher’s exact 
test. Again, refer to the contingency table where 
Fisher’s exact is going to calculate the exact probabil-
ity (under the null hypothesis) of the observed data 
or results more extreme. This is the technical defi ni-
tion of a P value. It is, however, still quantifying how 
compatible the data are with the null hypothesis. The 
exact probability of a particular contingency table can 
be obtained using the hypergeometric distribution.

The symbols that resemble large parentheses are 
notations for a combinatorial. Because using combina-
torials to calculate the probability is not user friendly, 

χ2 = Σ Σ
(Oij – Eij)

2

Eij

22

i = 1 j = 1

=
(6 – 10.9)2

10.9
(22 – 17.1)2

17.1
(35 – 30.1)2

30.1
(42 – 46.9)2

46.9+ + +

= 4.92

FIGURE 3. Chi-square distribution with 1 degree of freedom. Area 
under the curve at the test statistic of 4.92 and values more extreme 
equals the P value of .027.

From StatKey website: www.lock5stat.com/statkey

P value

Chi-squared distribition

(r − 1)(c − 1)

prob =
(n+1)!•(n+2)!•(n1+)!•(n2+)!

(n)!•(O11)!•(O21)!•(O12)!•(O22)!

n1+

O11 
•

n2+

O21 
n

n+1 

=
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an equivalent version relies on factorials instead. 
Both techniques are presented above. Remember 
that the goal is to fi nd the exact probability of the 
observed data or something more extreme. 

The hypotheses are still testing whether these 2 
categorical variables are associated with each other. 
In this particular example, we test if the proportion 
of patients with Parkinson disease is the same in the 
focal and nonfocal groups. Fisher’s exact test obtains 
its two-tailed P value by computing the probabilities 
associated with all possible tables that have the same 
row and column totals. Then, it identifi es the alterna-
tive tables with a probability that is less than that of 
the observed table. Finally, it adds the probability of 
the observed table with the sum of the probabilities of 
each alternative table identifi ed above, which results 
in the P value. 

To explore each of those steps in detail, one must 
fi rst enumerate how many tables can be built that all 
have the same row and column totals as the observed 
table. Figure 5 shows the 5 possible tables. Pick any 
one of the 5 2 × 2 tables; the margins are fi xed. Each 
table has the same row totals, 32 focal and 87 non-
focal, and each table has the same column totals: 4 
Parkinson and 115 non-Parkinson. Then, for each 
table, calculate the probability of that table. Figure 5 
shows this calculation for the fi rst 2 × 2 table, which 
happens to be the observed table. The probability of 
the table observed in the study is .2803. Such a calcu-
lation is performed on each of the other tables. 

Next, one must identify the tables that have a 
probability smaller than the observed table. Here, we 
are looking for probabilities less than .2803. These 
are the tables deemed more extreme. Tables 3, 4, and 
5 have probabilities less than .2803. 

The fi nal step is to sum the probability of the 
observed table and the more extreme tables (ie, those 
with probabilities < the observed table) (.2803 + .2337 
+ .0543 + .0045 = .5728). Thus, the resulting rounded 

P value is .57, which indicates a high level of compat-
ibility between the data and the null hypothesis of no 
association. The decision is to fail to reject the null 
hypothesis and the conclusion is that the evidence 
does not support an association among lung morphol-
ogy and Parkinson disease. In other words, there is 
insuffi cient evidence to claim that the proportion of 
Parkinson disease differs between the focal and nonfo-
cal ARDS patients (0% vs 5%, P = .57). This matches 
the P value reported by Mrozek for this association. 

The fi rst objective of this article was to identify 
scenarios in which a chi-square or Fisher’s exact test 
should be considered. The general setting discussed 
was an investigation of the association between two 
categorical variables. Use of each test specifi cally 
depends on whether the assumptions have been met. 
Both of the examples used in our discussion happened 
to be binary, but that is not a restriction. Categori-
cal variables can have more than 2 levels. All of the 
methods demonstrated for 2 × 2 tables can be gener-
alized to r × c tables.  

H0: Parkinson disease is not associated with lung morphology
H1: Parkinson disease is associated with lung morphology

 Mortality at day 90
   Yes No
 Lung Focal ARDS 0 32 32
 morphology Nonfocal ARDS 4 83 87
   4 115 119

FIGURE 4. Study-specifi c hypothesis and contingency table of lung 
morphology by Parkinson disease. Patient numbers are from the 
Mrozek study.1 ARDS = acute respiratory distress syndrome

Table Group PD No PD Probabilities

 1 Focal 0 32 .2803 + (Observed)
  Nonfocal 4 83
 2 Focal 1 31 .4271
  Nonfocal 3 84
 3 Focal 2 30 .2337 +
  Nonfocal 2 85
 4 Focal 3 29 .0543 +
  Nonfocal 1 86
 5 Focal 4 28 .0045 +
  Nonfocal 0 87

Let π1 and π2 represent the Parkinson disease (PD) rates for 
the focal and nonfocal groups, respectively. 

H0: π1 = π2 (no association)

Ha: π1 ≠ π2 (association) 

FIGURE 5. Hand calculations of the Fisher’s exact test. Note that 
all tables have the same row and column totals. The probabilities 
of each table are calculated according to the hypergeomet-
ric distribution. Tables deemed “more extreme” (ie, with 
probabilities < the observed table) are indicated with a +. 
The P value is obtained by summing the probabilities of the 
observed table and those more extreme.

prob1 =
(4)!•(115)!•(32)!•(87)!

(119)!•(0)!•(32)!•(4)!•(83)!
= .2803
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The second objective of this article was to recog-
nize when test assumptions have been violated. For 
simplicity, most researchers adhere to the follow-
ing: if ≤ 20% of expected cell counts are less than 
5, then use the chi-square test; if > 20% of expected 
cell counts are less than 5, then use Fisher’s exact 
test. Both methods assume that the observations are 
independent. Could one use the exact test when the 
chi-square assumptions are met? Yes, but it is more 
computationally expensive as it uses all possible fi xed 
margin tables and their probabilities. If the chi-square 
assumptions are met, then the sample size is typically 
larger and these calculations become numerous. Also, 
it does not have to be that large of a sample for the 
chi-square to be a good approximation and do it very 
quickly. 

The fi nal objective of this article was to test claims 
made regarding the association of 2 independent cat-
egorical variables. We included examples from the 
medical literature showing step-by-step calculations 
of both the large sample approximation (chi-square) 
and exact (Fisher’s) methodologies providing insight 
into how these tests are conducted as well as when 
they are appropriate.
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